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This paper considers the unsteady reestablishment of fully attached flow of an airfoil from the stalled condition

while undergoing ramp-down motions. The main purpose of the work was to extend the applicability of the

Leishman–Beddoes dynamic-stallmodel during the return from stalled state to the lowMach andReynolds numbers

of the Glasgow unsteady database. This was done by the adoption of the Beddoes modeling philosophy and the

technique of the lagging angle of attack that Sheng et al. [“A New Stall-Onset Criterion for Low Speed Dynamic-

Stall,” Journal of Solar Energy Engineering, Vol. 128, Nov. 2006, pp. 461–471; and “Improved Dynamic-Stall-Onset

Criterion at Low Mach Numbers,” Journal of Aircraft (to be published)] proposed for developing a new dynamic-

stall onset criterion. It is concluded that a more secure assessment was obtained of the nondimensional time taken to

convect the stalled flow over and away from the airfoil, compared with those of Niven et al. (“Analysis of

Reattachment During Ramp Down Tests,” Vertica, Vol. 13, No. 2, 1989, pp. 187–196) and Green and Galbraith

(“DynamicRecovery toFullyAttachedAerofoil Flow fromDeep Stall,”AIAAJournal, Vol. 33,No. 8, 1995, pp. 1433–

1440). This, combinedwith the appropriate lift-curve slope, yielded an improved data reconstruction over that of the

Leishman–Beddoes model. The present depiction and modeling of the reestablishment of fully attached flow from

stalled state is a valid enhancement to the Leishman–Beddoes model.

Nomenclature

c = chord length, m
cc = chordwise force coefficient
cd = drag coefficient
cNmin = normal force coefficient at its local minimum value

during the downstroke motion of airfoils
cn = normal force coefficient
cn� = best slope of the normal force coefficient
cp = pressure coefficient
jcpj-rise = pressure coefficient suction rise at the leading edge

(normally 2.5% chord)
dcn=d� = downstroke slope of the normal force coefficient

before full reattachment
f = separation location in terms of chord
f0, f00 = delayed separation function of f
M = Mach number
r = reduced pitch rate, _�c=2V
s = nondimensional time, 2Vt=c
s1, s2 = coefficients for separation function representation
Tf = nondimensional time delay of the separation point

due to dynamic effect
Tp = time-delay constant
Tr = nondimensional time-delay constant for the

reattachment process
TV = time constant of the vortex traveling over the chord
TVL = vortex-passage-time constant
T� = delay constant for the angle of attack due to

dynamic effect
V = freestream velocity, m=s
Vx = shape function of the normal force due to the vortex

� = angle of attack or incidence, deg
�cr = critical stall-onset angle of attack, deg
�ds = stall-onset angle of attack, deg
�ds0 = constant critical stall-onset angle of attack, deg
�min = angle of attack at cNmin, deg
�min 0 = angle of attack at cNmin for the static test, deg
�ss = static stall-onset angle of attack, deg
�0 = mean angle of attack in the oscillating motion of the

airfoil, deg
�1 = breakpoint of separation
� = step change in forcing or in time
�cmv = pitching moment due to the vortex
�cnv = additional normal force due to the vortex
�m = forcing for the circulatory pitching moment
�n = forcing for the circulatory normal force
� = reduced frequency !c=2V
�m = forcing for the noncirculatory pitching moment
�n = forcing for the noncirculatory normal force
� = nondimensional time-delay constant for

reattachment
�v = nondimensional time during the vortex passage

I. Introduction

A S IS well-documented [1–7], deep dynamic stall is
characterized for oscillatory pitching motions by large

hystereses. The computational simulations [7–9] or reconstructions
[9–14] of such unsteady airfoil performance are both difficult and
problematic. Figure 1 is illustrative of the problem and depicts the
reconstruction of the cyclical cn of the NACA 0012 airfoil
undergoing dynamic stall using the Leishman–Beddoes (L–B)
dynamic-stall (DS) model [14].

It may be observed that the reestablishment of the fully attached
state is not predicted well. This is hardly surprising, because the
model has been developed and refined for the data of Mach numbers
greater than 0.3, whereas the experimental data used here have a
Mach number of about 0.12.

The difficulty with oscillatory pitching motions is that it is often
difficult to isolate the effects of the associated flow phenomena when
they may be occurring simultaneously. It was for this reason that
constant pitch-rate motions (i.e., ramps) were investigated by
WestlandHelicopters [15] and continued at GlasgowUniversity [16]
and at United Technologies Research Center by Lober and Carta
[17], to isolate the detailed contributions of each flow state. The
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usefulness of the resultant measured unsteady pressure data of ramp-
up tests was recently demonstrated by Sheng et al. [18,19] in the
development of their new stall-onset criterion for low-speed dynamic
stall. They further illustrated the new criterion’s applicability to
oscillatory pitching motions.

The underlying philosophy, indirectly expounded by Beddoes
[20–23] and then by Leishman and Beddoes [14], was to attempt to
model the extant physics, or flow descriptions, to at least a first order.
In 1976, Beddoes [20] noticed that irrespective of the airfoil’s
reduced frequency, there were quite definite time constants that
characterized the various parts of the aerodynamic hysteresis loop of
cn. This resulted in the Beddoes time-delay method [20], with the
stall-onset criterion being that of a pitching-moment break
correlation. As more detailed information became available,
including “ramp” data, this model evolved and eventually became
the popular L–B DS model [14].

Using this philosophy, and with detailed data for low-speed flows
readily available, Niven et al. [24] developed a correlation for the
initial phase offlow reattachment from stall. From that correlation, an
enhancement to the model for the return from stall was initially
developed. It included a time delay and a lift-curve slope associated
with that part of the cn curve. In that paper, however, no attempt was
made to explain the reasons for the observations or, indeed, the
seemingly anomalous data, in which there was a mix of ramp-rate-
dependent and ramp-rate-independent data.

Green and Galbraith [25] eventually resolved the anomalous data
by unraveling the two distinct events of the reattachment process that
appear in the Glasgow data: 1) the “mush” of the stalled flow above
the airfoil has to be convected over the upper surface before 2) the
reestablishment of a fully attached boundary layer. The convection
process was pitch-rate-independent, whereas the boundary-layer
development was not. In other words, the mechanisms for the return

from stalled state are similar: that is, a convective wave independent
of pitch rate followed by a pitch-rate-dependent boundary-layer
development. Depending on pitch rate, the processes may overlap
each other. Similar processes are also found in [26–29].

The L–BDSmodel reconstructs the return from stall via a heavily
lagged separation function proceeding from the leading edge to the
trailing edge. Figure 2 illustrates a general progression of the
separation location in such a model, including both upstroke and
downstroke of a pitching motion. In Fig. 2, it may be seen that the
lagging of the steady-state separation profile delays themovement of
the separation point. An obvious lag in rapid pitch-down motion
would significantly delay the achievement of fully attached flow.

By employing the Kirchhoff equation (1) and applying a
separation point lagging, as depicted in Fig. 2, the L–B model can
reconstruct the normal forcewith a hysteresis for an oscillatory airfoil
(the reconstruction in Fig. 1). Unlike some of the measured data in
ramp-down tests, however, this technique does not produce negative
values of cn at a significant positive incidence.

cn � cn��� � �0�
�
1�

���
f
p

2

�
2

(1)

This methodology provided a distinct improvement to earlier
modeling attempts but, at least for the low-speed cases, no longer
reflected the processes involved in the return from stall. With the
increased detailed ramp-down data available to Niven et al. [24], an
attempt to model the return from stall for ramp-down motions was
made simply by considering the cn response. To do this, it was
assumed that the rise of the magnitude of the pressure coefficient on
the suction side at the 2.5% chord indicated the start of
reestablishment of fully attached flow. The difference between this
start point and the timing of cNmin was taken to be the duration of the
convective wave (i.e., all the stalled flow had left the trailing edge).
Whether this is the case is of secondary importance, because the two
relatively distinct markers offered appropriate timing marks.

The resultant nondimensional times from start to finish were then
calculated and plotted as shown in Fig. 3. The most obvious feature
of this figure is, of course, the scatter, which is reminiscent of that
obtained for the duration of deep-stall development [30] or the
convection speed of the dynamic-stall vortex.

Sheng et al. [18,19] developed a new stall-onset criterion
specifically for low-speed airfoils that was more secure and better
defined than those based on the Evans–Mort correlation [31]. The
present paper advances that work by treating the return from stalled
state in a similar manner and therefore enhances the results of Niven
et al. [24]. It will be shown that the new procedure for assessing the
time delay associated with the convective wave greatly reduces the
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Fig. 1 Reconstruction of cn by the L–B DS model, compared with

experimental data (NACA 0102).
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Fig. 2 Trailing-edge separation location of a static case and its lagged

values of rapid upstroke and downstroke.

Fig. 3 Nondimensional time-delay constant for the reattachment

process (Green et al. [26]).
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scatter (shown in Fig. 3). And what’s more, there is also no
requirement tomake an assessment of the initiation of the return from
stall in the procedure, because this follows automatically from the
methodology. Even when it is difficult to pinpoint the instant of
cNmin, an appropriate correlation may be still obtained, provided
good data are available within a restricted range.

II. Glasgow Database

The Glasgow database of unsteady aerodynamic data contains
information on the dynamic stalling of airfoils and wings and on
blade–vortex interactions. Of relevance to the present work are those
data associated with 2D dynamic stall. To date, fifteen 2D airfoils
have been tested and these are listed in Table 1, together with the
section profiles. All but one of the airfoils were mounted vertically in
the Glasgow Handley–Page wind tunnel and pitched at the quarter-
chord location. That facility has a 2:14 � 1:61 m working section,
and with the normal model chord of 0.55 m (three exceptions), the
tests were carried out at a Reynolds number of 1:5 � 106 and aMach
number of 0.12. Surface pressure data were obtained via miniature
pressure transducers.

III. Modeling of the Reattachment Process

As mentioned previously, the enhancement to the L–B model
considered here is simply that of an assessment of the convective part
of the reattachment process (in particular, during the return from the
fully stalled condition while undergoing ramp-down pitch
displacements). Niven et al. [24] had taken the start of that process
to be the suction pressure rise at the 2.5%-chord location. There was
no particular significance about this location and it could have been
taken anywhere in the leading-edge suction region. Nonetheless,
some indication of the onset of the return from stall had to be chosen
and 2.5% seemed, at that time, to be reasonable. The recovery in
leading-edge suction (jcpj-rise) may be observed in Fig. 4, which
depicts the pressure coefficient against both time (Fig. 4a) and
incidence (Fig. 4b).

In Fig. 4a, the evident fluctuations overmuch of the initial phase of
the ramp-down are associated with the bluff-body flow and therefore
with the Strouhal vortex shedding frequency. The suction recovery
jcpj-rise is clearly indicated in both Figs. 4a and 4b.

The timing mark chosen for the completion of the convective
process, and that adopted in the present work, was when the normal
force coefficient cn achieved a local minimum value. This marker is
depicted in Fig. 5. Once again, the apparent oscillations in the initial
phase of the motion (Fig. 5a) are indicative of classical bluff-body
flow.

For each of the ramp-down rates, Green and Galbraith [26]
calculated the nondimensional time between the start and completion
of the convective process. The time-delay constants for the NACA
23012B, NACA 23012C, and NACA 0015 airfoils were calculated
and presented in Fig. 3, in which there is a significant scatter. That

scatter is a consequence of the uncertainties in both jcpj-rise and
cNmin being compounded. The averaging of the values results in the
nondimensional time constants of 3.0, 1.9, and 2.9 (see Green and
Galbraith [26]).

Figure 6 shows typical results in which the incidence of jcpj-rise
and cNmin are plotted against the reduced pitch rate. The figure
illustrates the constancy, to a first order, of the jcpj-rise angle and the
linearity of the cNmin variation with reduced pitch rate.

According to Niven et al. [24], the jcpj-rise was observed to be
independent of reduced pitch rate, to a first order, and close to the
fully stalled incidence. Given this, it may be assumed that at a
reduced pitch rate of zero, the onset of the return from stall coincides
with the cNmin angle (i.e., the fully stalled angle). This assumption is
acceptable for the NACA 0015 in Fig. 6. As mentioned before, the
actual location of jcpj-rise may vary from airfoil to airfoil. In Fig. 6,
the incidence at the jcpj-rise is a weak function of reduced pitch rate
and may not be coincident with the static stall incidence at r� 0.
This may be a consequence of accepting that the jcpj-rise assessment
was at an arbitrary location of 2.5% of the chord. Unless the jcpj-rise
location is known a priori and an appropriate transducer is located
there, uncertainty will always be present.

Here, a new method is proposed. Let �1 and �2 represent the
incidences of cNmin and the supposed actual jcpj-rise (not 2.5%c,
necessarily), respectively. The data are then represented by the
following functions:

�
�1 � �01 � �1r
�2 � �02 � �2r

(2)

Table 1 Airfoils tested at the University of Glasgow

No. Airfoil Thickness Chord Span

1 NACA 23012 12% 0.55 m 1.61 m
2 NACA 23012A 12% 0.55 m 1.61 m
3 NACA 23012B 12% 0.55 m 1.61 m
4 NACA 23012C 16% 0.55 m 1.61 m
5 NACA 0015 15% 0.55 m 1.61 m
6 NACA 0018 18% 0.55 m 1.61 m
7 NACA 0021 21% 0.55 m 1.61 m
8 NACA 0025 25% 0.55 m 1.61 m
9 NACA 0030 30% 0.55 m 1.61 m
10 NACA 0012 12% 0.55 m 1.61 m
11 NACA 0015 15% 0.275 m 1.61 m
12 AHAVAW 21% 0.55 m 1.61 m
13 GUVA10 18% 0.55 m 1.61 m
14 SSC-A09 9% 0.50 m 1.61 m
15 RAE9645 12% 0.50 m 2.40 m
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For a particular reduced pitch rate, the difference �� between �1
and �2 is

��� ��01 � �02� � ��1 � �2�r (3)

and the nondimensional time delay Tr can be calculated by

Tr �
�01 � �02
r
� �1 � �2 (4)

Because Tr is considered to be a constant, it must be independent
of reduced pitch rate r, and so we have at r� 0

�01 � �02 � 0 or �01 � �02 (5)

This is a perfectly reasonable simplification given that at r� 0
(i.e., steady flow) both �01 and �02 should coincide. Similar to the
conclusion of Niven et al. [24], the jcpj-rise (not 2.5%c, necessarily)
was supposed to be virtually independent of r, then �2 � 0. Hence,

Tr � �1 (6)

From the preceding analysis, only one linear fit (i.e.,
�1 � �01 � �1r) is needed for the new proposed method, and it can
be rewritten as

�min � �min 0 � �1r (7)

A least-squares fit to the test data provides both �min 0, and �1.
From these, Tr can be obtained via Eq. (6). The values of �min 0, Tr,
and dcn=d� for different airfoils are listed in Table 2.

Accordingly, the preceding analysis negates the requirement to
make any assessment of the location of the jcpj-rise at the leading
edge of the airfoil. The onset of the return from the stall simply
follows when the curve fit to the cNmin data crosses the y axis.
Figure 7 is indicative of the obtained results.

The precedingmethodology, therefore, provides both the required
duration Tr of the convective phase and its implied onset angle �min 0

of reattachment start. Together with the average gradient of the
appropriate ramp-down normal force curve dcn=d�, this completes

the required empirical inputs to the modification of Niven et al. [24]
to the L–B model. As will be discussed, the dcn=d� values could be
different for ramp-down and oscillatory motions.

IV. Results and Discussion

The new model in this section incorporates the return modeling
described in the previous section and the stall-onset criterion of
Sheng et al. [18,19] into the original L–B DS model (see the
appendices for details). For ramp-downs, the model is initiated from
ameasured cn value at a fully stalled incidence. The reconstruction of
cn then follows the measured cn slope value until the incidence is
reduced to�min 0, then the calculation proceeds continuously until the
time delay Tr is expired when the convective phase is assumed to be
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Fig. 6 Reattachment start (jcpj-rise) and cNmin attained for NACA

0015.

Table 2 Values of �min 0, Tr, and dcn=d� for different airfoils

Airfoil �min 0, deg Tr dcn=d�

NACA 0012 16.57 5.82 0.0589
NACA 0015 17.87 6.50 0.0556
NACA 0018 20.78 5.86 0.0550
NACA 23012 21.15 3.50 0.0539
NACA 23012A 21.45 5.42 0.0627
NACA 23012B 18.75 6.54 0.0468
NACA 23012C 23.24 5.07 0.0545
AHAVAW 21.29 5.06 0.0528
GUVA10 20.07 6.18 0.0506
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complete. After that, an exponential return to the fully attached state
is implemented to facilitate a smooth return to the original L–B DS
model and to simplistically mimic the reestablishment of a fully
attached boundary layer.

Figure 8 is representative of the ability of the model to reconstruct
the measured data for ramp-down tests from the fully stalled
condition to the fully attached condition. Results from the original L–
BDSmodel are also comparedwith themeasured data for theNACA
0015 airfoil.

In Fig. 8a, which shows low pitch-rate cases, the reconstruction of
cn is in excellent agreement with the measured data, better than that
of the L–B model. This is because the L–B model considers the
boundary-layer reestablishment only and does not include the
convective phase of the process. The reduced pitch rate in Fig. 8b is
much higher than that in Fig. 8a, and the current modeling procedure
may be seen to be a significant improvement over the original L–B
model. In this case, however, the exponential return to the original
model has significantly overpredicted the measured data. Although
this is of concern, the return to the original model does not form the
thrust of the present work, whichwas simply tomodel the convective
phase; for this, it does rather well.

As stated previously, ramp-type data were used in the
development of the current technique to minimize any conflict of
timing between the various phases of the dynamic stalling process
found in oscillatory motions. For the current model, which
reconstructs, to a good accuracy, the convective phase of the
reattachment process during ramp-downs, it also must be applied to
the oscillatory motions if it is to be of any long-term value.

Figure 9 presents a typical result for an oscillatory case, in which it
may be observed that, using the normal force curve slope obtained
from the ramp-down motions, the gradient is far too shallow when
compared with the measured data in an oscillatory motion. The

important point to note, however, is that albeit the gradient is low, the
duration of the convective phase is well-predicted.

For a ramp-down test at the University of Glasgow, the testing
sequence was that, previous to the data recording, the airfoil was
continuously pitched up to the start angle of the ramp-down from a
low angle of attack and held there for about 4 s seconds
(approximately 160 chord lengths of travel). Then the airfoil linearly
ramped down to low incidence again. From the sequence, we can see
that just before the initiation of the ramp-down, the airfoil behaves as
a bluff body with periodic vortex shedding. This shedding induces
small changes in the effective incidence of the airfoil that are
manifest as unsteadiness in the recorded normal force. In essence,
however, the flow could otherwise be considered to be steady, with
the near wake of the airfoil having no significant vortical content.
Conversely, in an oscillatory test, vorticity is continually shed into
the near wake of the airfoil as the lift changes due to the pitching
motion. This implies that just before the downstroke, the wake of the
airfoil will be populated by vorticity shed during the upstroke. Also,
just before the downstroke, there is a rapid drop in normal force that
will result in concentrated vorticity being shed into the airfoil wake.
The sense of this vorticity will be to increase the effective incidence
of the airfoil at the start of the convective phase. As this vorticity
convects downstream, its influence will diminish. The net effect will
be to steepen the normal force curve during the convective phase.

Careful inspection has revealed that for the oscillatory motions in
which stall occurs, the cn gradient, during the convective phase, is
close to that of the fully attached flow portion of the model upstroke.
Accordingly, that gradient was adopted and is readily available,
either from the measured data or the model predictions. Using this
gradient, the result is as indicated in Fig. 9. There it may be observed
that not only is the reconstruction of the data improved but, most
important, the concept of a convective wave does indeed work well.

There are, however, additional modeling considerations that could
receive attention. In particular, there are clearly secondary vortices
generated and convected away during the return from stall. The
current modeling does not include these.

Figures 10 and 11 present the results of cn during oscillatory
motions. The new model produces a significant improvement
compared with the original model. For the purposes of a fairer
comparison, however, an additional prediction is also includedwhen
the original L–B model incorporates the stall-onset criterion of
Sheng et al [18,19] [referred to as “L–Bmodel (mod)” in Figs. 10 and
11]. Hence, the upstrokes appear to be identical and so produce a
proper comparison for the return from stall.

Perhaps the most striking feature of these figures is the
ineffectiveness of the L–B model to reconstruct the cn response on
the downstroke. It appears that the recognition of the two distinct
phases of the return from stall in the current method has yielded an
improved reconstruction, compared with the measured data.

Despite this, two important areas still require careful consideration
if higher-fidelity modeling is to be achieved: first, the interaction of
the vortex shedding and the convection of the stalled flow from the
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upper surface during oscillatory pitching motions, and second, the
interaction of the reestablishment of the attached boundary layerwith
the convection phase of the process. These will be the subject of
future work.

V. Conclusions

1) A new method of modeling the unsteady establishment of fully
attached flow during pitch-downmotionswas proposed. Themethod
is based on the observation that the reestablishment process can be
split into two phases: a convective phase and a reduced pitch-rate-
dependent phase associatedwith the reestablishment of the boundary
layer.

2) By considering the local minimum value cNmin of normal force
during a ramp-down over a range of the reduced ramp rates, the
acquisition of both the onset angle of the convective phase and its
duration may be assessed.

3) The onset angle �min 0 and duration of the convective phase Tr,
together with the normal force curve slopedcn=d� in the fully stalled
region, provides the three empirical inputs to the L–B DS model.

4) Themodeling procedure reduced the scatter associated with the
methodology used by Niven et al. [24].

5) By observation, the required value of dcn=d� during the
convective phase in oscillatory motions is better represented by
measured slope, normally paralleling to the fully attached portion of
upstroke.

6) The present model displays a significant improvement for the
predictions of ramp-down and oscillatory motions over the L–B DS
model.

All of the preceding are related solely to low-speed flow and, in
particular, to a Reynolds number in the region of 1:5 � 106 and an
associated Mach number of 0.12.

Appendix A: Leishman–Beddoes Model

I. Airloads for Attached Flow

Circulatory components:

�ccn�s� � cN���n�1 � A1e
�b1s � A2e

�b2s � A3e
�b3s� (A1a)

�ccm�s� ���m
�

4
����������������
1 �M2
p �1 � e�s=TM � (A1b)

Impulsive components:

�cIn�s� ���n
4

M
e�s=TI (A1c)

�cIm�s� � ���m
4

M
e�s=TI (A1d)

with the forcing representations for a pure pitching motion at its
quarter-chord axis

8>>>>><
>>>>>:

�n � �� c
2V

_�

�m � c
2V

_�

�n � �� c
4V

_�

�m � 1
2
�� 7c

24V
_�

(A2)

and the coefficients
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Fig. 11 cn reconstructions of oscillatory tests for NACA 23012B.
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A1� 0:165; A2� 0:335; A3� 0:5 b1� 0:05;

b2� 0:222; b3� 0:8=M TM�M=2; TI �
M�1� 3M�

2

II. Airloads for Separated Flow

For a static test, Leishman and Beddoes [14] employed the
Kirchhoff equation to calculate the normal force including separated
flow:

cn � cn��� � �0�
�
1�

���
f
p

2

�
2

(A3)

Therefore, the trailing-edge separation function f can be represented
by piecewise exponential functions:

8>><
>>:
f��� � 1 � 0:4 exp

�
���1
s1

�
; � � �1

f��� � 0:02� 0:58 exp

�
�1��
s2

�
; � > �1

(A4)

Because of the induced camber effect under dynamic condition, a
positive pitch rate decreases the leading-edge pressure for a given
value of normal force. A Tp lagging to the unsteady normal force can
stand for this effect as follows:

�c0n�s� ���ccn�s� � cIn�s�	�1 � e
� s
Tp � (A5)

From the comparison of the lagged normal force (A5) with the
static normal force, an approximate Tp could be obtained (see
Fig. A1, in which cp is the pressure coefficient at 2.5%c).

Then an effective angle of attack is defined by the lagged normal
force:

�eff�s� �
c0n�s�
cn�

(A6)

Based on the effective angle of attack, a delayed trailing-edge
separation can be obtained:

8>><
>>:
f0��� � 1 � 0:4 exp

�
�eff��1
s1

�
; �0 � �1

f0��� � 0:02� 0:58 exp

�
�1��eff
s2

�
; �0 > �1

(A7)

The unsteady airloads excluding dynamic stall can be assessed as the
following forms:

cn � �ccn � cIn�
�
1�

����
f0
p

2

�
2

� cn� � �0 (A8a)

cm � cm0
cn

� k0 � k1�1 � f0� � k2 sin��f02� (A8b)

cc � �cN��� � �0�2
����
f0

p
(A8c)

cd � cd0 � cn sin� � cc cos� (A8d)

III. Dynamic-Stall Onset

Dynamic stall occurs when

c0n�s� 
 cn1 (A9)

with the critical normal force cn1 obtained from the static normal
force that corresponds to either the break in the pitching moment or
the chordwise force at stall (Leishman and Beddoes [14])

IV. Airloads Because of Dynamic Vortex

Themodeling strategies for the airloads due to the dynamic vortex
are outlined as follows:

1) The vortex forms at and detaches from the leading-edge region,
inducing an overshoot in normal force as if the flow is still attached to
the upper surface. Hence, its effect could be represented by a further
boundary separation location delay:

�f00�s� ��f0�s��1 � e�
s
Tf � (A10)

2) At lowMach numbers, an additional overshoot in normal force
occurs due to the vortex growing in strength and convecting across
the chord. The additional normal force strength is believed to be
proportional to the difference between the delayed separation
location and its corresponding value in the steady case:

Vx � sin3=2
�
��

2TV

�
for 0< � < TV (A11a)

and, subsequently,

Vx � cos2
�
��� � TV�
TVL

�
for � > TV (A11b)

The additional overshoot due to the dynamic vortex is calculated by

�cnv � B1�f00 � f	 � Vx (A12)

3) The large nose-down pitching moment is induced due to the
vortex convection over the chord. Its strength is proportional to the
vortex normal force:

�cmv � B2

�
1 � cos

�
��v
TV

��
��cnv (A13)

with the coefficients B1 and B2 adjustable for different airfoils.

V. Return from Stalled State

Leishman and Beddoes [14] suggested that the elements of the
model are physically coupled. Hence, it is necessary to half or double
the time constants during different dynamic stages. In our cases of
low Mach numbers, the large hysteresis loop in normal force,
especially the deep lagged return from the stalled state, suggests that
doubling or quadrupling Tf is advisable for the reattachment stage.

Appendix B: Dynamic-Stall-Onset Criterion
of Sheng et al.

Sheng et al. [18,19] employed a mathematical deduction and the
correlation of measured data to develop a new dynamic-stall-onset
criterion.
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Fig. A1 Lagged normal force for a ramp-up test, compared with static

normal force.
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First, a linear function for the relationship is employed to fit the
stall-onset angle for reduced pitch rates larger than r0; that is,

�ds � �ds0 �m1r (B1)

Equation (B1) was fitted to ramp-up test data (circles in Fig. B1) by a
least-squares method, and the constants �ds0 and m1 were obtained.

Second, a nondimensional time-delay constant was calculated by

T� �m1 (B2)

Third, a critical stall-onset angle is defined by

�
�cr � �ds0; r 
 r0
�cr � �ss � ��ds0 � �ss� rr0 ; r < r0

(B3)

Lagging the angle of attack via the time constant T�,

��0�s� ����s��1 � e� s
T�� (B4)

Finally, stall onset is said to occur when

�0 
 �cr (B5)

To apply the new stall-onset criterion, the delayed trailing-edge
separation function is obtained by referring the lagged angle of attack
to the effective angle of attack, together with a angle of shift ��1:

�
��1 � �ds0 � �ss; r 
 r0
��1 � ��ds0 � �ss� rr0 ; r < r0

(B6)

The new delayed separation function f0 is now

8>><
>>:
f0��� � 1 � 0:4 exp

�
�0��1���1

s1

�
; �0 � �1

f0��� � 0:02� 0:58 exp

�
�1���1��0

s2

�
; �0 > �1

(B7)

To replace the stall-onset criterion (A9) and the delayed trailing-
edge separation function (A7) in the L–B model with the new stall-
onset criteria (B3–B5) and the delayed trailing-edge separation
function (B7), respectively, an initially modified L–B model is
obtained [“L–B model (mod)” in Figs. 10 and 11]. The
implementation of the return modeling proposed in this paper in
the modified L–B model has finally resulted in a new model (“new
model” in Figs. 10 and 11).
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